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General quantum Brownian motion with initially correlated and nonlinearly coupled environment

Subhashish Banerjee and R. Ghosh*
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
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The dynamics of an open quantum system exhibiting the quantum Brownian motion is analyzed when the
coupling between the system and its environment is nonlinear, and the system and the reservoir areinitially
correlated. For couplings quadratic in the environment variables, the influence functional for the system is
obtained perturbatively up to second order in the coupling constant, and then the propagator is explicitly
evaluated when the particle is under the influence of a harmonic potential and an additional anharmonic
potential, the so-called washboard potential. As an application of the propagator, the master equation and the
Wigner equation are obtained for the quantum Brownian particle moving in a harmonic potential for the
generalized correlated initial condition, and then for the specific case of the simplified ‘‘thermal’’ initial
condition. The system is shown to obey the corresponding fluctuation-dissipation theorem.
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I. INTRODUCTION

The fluctuating or ‘‘Brownian’’ motion of a quantum par
ticle coupled to an environment serves as a model for
investigation of observable macroscopic effects in op
quantum systems. The problem is usually handled using
influence functional method introduced by Feynman and V
non @1#, where the object of interest is the reduced dynam
of the system evolving under the influence of the enviro
ment, which is quantified by the influence functional@2#. In
the model studied by Caldeira and Leggett@3#, the coordi-
nate of the particle was coupledlinearly to an infinite set of
harmonic oscillators constituting the environment, and it w
also assumed that the system and the environment were
tially factorized. However, in general, there are physi
problems modeled by the quantum Brownian motion, wh
involve some form of nonlinearity in the interaction betwe
the system and its environment, for example, as pointed
by Hu, Paz, and Zhang@4#, in the strong-field conditions in
the early Universe when one cannot exercise any con
over the strength of the coupling. Huet al. @4# and Brun@5#
developed techniques to obtain the influence functional p
turbatively for the case of nonlinear system-environm
coupling, but with the assumption of factorized initial cond
tions.

There may be difficulties associated with the factoriz
~product! initial state, which assumes a sudden artific
switch-on of the interaction between the system and the
vironment at timet50, and thus influences the subseque
short-time behavior of the system. The treatment of the qu
tum Brownian motion with linear coupling has been gen
alized to the physically reasonable initial condition of
mixed state of the system and its environment by Hakim
Ambegaokar @6#, Smith and Caldeira@7#, and Grabert,
Schramm, and Ingold@8#, and by us@9# for the case of a
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system in a Stern-Gerlach potential. There is no treatm
available in the literature for the quantum Brownian moti
with nonlinear system-environment couplings and gene
ized nonfactorizable initial conditions, which is the aim
the present work.

In this work we use the influence functional to get t
propagator for the problem when the particle is under
influence of a harmonic potential, and also an anharmo
potential, the so-called washboard potential@10,11#, which
models the motion of a heavy charged particle in the inte
or at the surface of a metal. From the propagator for
particle in a harmonic potential we obtain the master eq
tion and the Wigner equation for a general nonfactoriza
initial condition, and then for the specific case of a ‘‘the
mal’’ initial condition, introduced by Hakim and Ambe
gaokar@6#, where the off-diagonal elements of the dens
matrix of the total system are suppressed and thus the t
sients due to the switching on of the system-environm
interaction at t50 are avoided. We also establish
fluctuation-dissipation theorem connecting the dissipat
and the fluctuating influences of the stochastic environm

The present paper is organized as follows. In Sec. II
briefly present the influence functional for nonlinear syste
environment couplings@12#. In particular, for interactions
quadratic in the position of the environmental oscillato
coupled with an arbitrary functionf (x) of the system, the
influence functional is obtained up to second order in
coupling constant. In Sec. III we use the influence functio
with the simple form of coupling linear in the system coo
dinate, i.e., withf (x)5x, to obtain the propagator of th
particle in a harmonic potential~Sec. III A!, and in an addi-
tional anharmonic ‘‘washboard’’ potential~Sec. III B!. In
Sec. IV A we use the propagator in Sec. III A to obtain t
master equation and from it the Wigner equation for t
quantum Brownian oscillator. The inhomogeneities in t
master equation under generalized initial conditions dis
pear for the case of the ‘‘thermal’’ initial conditions consid
ered in Sec. IV B. In Sec. V we establish a generaliz
ic
©2003 The American Physical Society20-1
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fluctuation-dissipation theorem for our quantum Browni
oscillator. Finally in Sec. VI we summarize our results.

II. INFLUENCE FUNCTIONAL

Our model for the quantum Brownian motion consists
the usual system of a quantum particle of massM moving in
a potentialV(x) and coupled to an environment of a set
harmonic oscillators. The actions for the system and the
vironment are given by

SS@x#5E
0

t

dsF1

2
Mẋ22V~x!G ~1!

and

SE@$qn%#5E
0

t

ds(
n51

N F1

2
mnq̇n

22
1

2
mnvn

2qn
2G , ~2!

where subscriptsS and E stand for system~particle! and
environment, respectively;x denotes the position of the pa
ticle; mn , vn , andqn are the mass, frequency, and positi
of the nth environmental oscillator. The action for th
system-environment interaction is@4#

SSE@x,$qn%#5E
0

t

ds(
n

@2lCnf ~x!qn
k#, ~3!

wherel is a dimensionless coupling constant introduced
later use as a small parameter in the perturbative expan
k is an integer, the system-environment coupling is nonlin
with the environmental nonlinearity resting in the powerk of
qn and the system effect being described by a general fu
tion f (x).

The influence functional produced by the environment

F̃@x,x8,x̄#5)
n
E dqni

dqni
8 dqnf

ZRn

21E DqnDqn8Dq̄n

3expF i

\
~SE@$qn%#1SSE@x,$qn%#2SE@$qn8%#

2SSE@x8,$qn8%#!2
1

\
~SE

EC@$q̄n%#

1SSE
EC@ x̄,$q̄n%#!G , ~4!

assuming that initially the interacting system is in a therm
equilibrium state at a temperatureT5(kBb)21, with

qn~ t !5qn8~ t !5qnf
, qn~0!5q̄n~\b!5qni

,

q̄n~0!5qn8~0!5qni
8 , x̄~0!5 x̄8, x̄~\b!5 x̄. ~5!

In Eq. ~4!, ZR
21 is a normalization constant that ensures t

F̃51 in the case of vanishing interactions. SuperscriptEC in
Eq. ~4! stands for the Euclidean action, and the correspo
ing imaginary-time functional integral over all pathsq̄n con-
05612
f

n-

r
n,
r

c-

l

t

d-

nectingq̄n(0)5qni
8 with q̄n(\b)5qni

describes initial corre-

lations between the system and its environment@8#. The
propagator in the path-integral representation is given by

J~xf ,xf8 ,t,xi ,xi8 ,x̄,x̄8!5
1

ZE DxDx8Dx̄ expF i

\
~SS@x#

2SS@x8#1 iSS
EC@ x̄# !G F̃@x,x8,x̄#,

~6!

whereSS@x# is action~1! describing the system andSS
EC@ x̄#

is its Euclidean counterpart.
Now, the influence functional is

F̃@x,x8,x̄#5)
n

F̃n@x,x8,x̄#

5)
n

expF i

\
dAn@x,x8,x̄#G

5expF i

\
dA@x,x8,x̄#G , ~7!

wheredA5(ndAn is the total influence action.
As a consequence of the nonlinearity in the coupling,

influence functional cannot be obtained exactly. Howev
assuming that the parameterl is small, we proceed as do H
et al. @4# to obtain the desired influence functional perturb
tively in orders ofl.

The influence functional of an environment where the e
vironment oscillators are linearly coupled to the coordin
of the system is@4#

F̃n
(1)@J,J8,J̄#

5E
2`

`

dqni
dqni

8 dqnf
ZRn

21E
qni

qnf
DqnE

qni
8

qnf
Dqn8E

qni
8

qni
Dq̄n

3expF i

\ H SE@qn#1E
0

t

dsJ~s!qn~s!2SE@qn8#

2E
0

t

dsJ8~s!qn8~s!J 2
1

\H SE
EC@ q̄n#

1E
0

\b

dt@2 J̄~t!q̄n~t!#J G
5K expF i

\ H E
0

t

dsJ~s!qn~s!2E
0

t

dsJ8~s!qn8~s!

2 i E
0

\b

dt J̄~t!q̄n~t!J G L
0

, ~8!

where^•••&0 denotes the average of the function of the e
vironment variables. Using this definition, the influen
functional can be expressed as@12#
0-2
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F̃n@x,x8,x̄#5 K expF i

\
$SSE@x,qn#2SSE@x8,qn8#1 iSSE

EC@ x̄,q̄n#%G L
0

5expF i

\ H SSEFx,
\

i

d

dJG2SSEFx8,2
\

i

d

dJ8
G1 iSSE

ECF x̄,\
d

d J̄
G J G F̃n

(1)@J,J8,J̄#u$J,J8,J̄50% . ~9!

We now consider the case where the coupling is quadratic in the environment variables, i.e., wherek52 in Eq. ~3!. The
influence functional up to second order inl is then obtained in the continuum limit as

F̃@x,x8,x̄#5expH 2
i

\E0

t

dsdV~x!1
i

\E0

t

dsdV~x8!2
1

\E0

\b

dtdV̄~ x̄!1
1

2\E0

\b

dtE
0

\b

dsk(2)~t2s! f „x̄~t!…f „x̄~s!…

1
i

\E0

t

dsE
0

\b

dtK* (2)~s2 i t! f „x̄~t!…@ f „x~s!…2 f „x8~s!…#2
i

\E0

t

dsE
0

s

du@ f „x~s!…2 f „x8~s!…#h (2)~s2u!

3@ f „x~u!…1 f „x8~u!…#2
1

\E0

t

dsE
0

s

du@ f „x~s!…2 f „x8~s!…#n (2)~s2u!@ f „x~u!…2 f „x8~u!…#J . ~10!
In Eq. ~10!, dV(x), dV(x8), dV̄( x̄) are the potential
shifts, given by

dV~x!5(
n

dVn~x!

5(
n

\
lCn

2mnvn
Zf ~x!

5E
0

`dv

p
rD~v!Zf ~x!, ~11!

dV~x8!5(
n

dVn~x8!

5(
n

\
lCn

2mnvn
Zf ~x8!

5E
0

`dv

p
rD~v!Zf ~x8!, ~12!

dV̄~ x̄!5(
n

dV̄n~ x̄!

5(
n

\
lCn

2mnvn
Zf ~ x̄!

5E
0

`dv

p
rD~v!Zf ~ x̄!, ~13!

with

Z5cothS \vb

2 D5cothS \v

2kBTD ~14!
05612
and

rD~v!5(
n

d~v2vn!
p\lC~v!

2mv
. ~15!

Also, in Eq. ~10!,

k(2)~t2s!5
M

\b (
k52`

`

zk
(2)eink(t2s)1E

0

`dv

p
I ~v!~Z 221!

~16!

with

zk
(2)5

8

ME
0

`dv

p
I ~v!Z v

@4v21nk
2#

, ~17!

and

I ~v!5(
n

d~v2vn!
p\l2C2~v!

~2mv!2 ~18!

is the spectral density of the environment oscillators;

K* (2)~s2 i t!5
M

\b (
k52`

`

@gk~s!1hk~s!#einkt

1E
0

`dv

p
I ~v!~Z 221! ~19!

with

gk~s!5
8

ME
0

`dv

p
I ~v!Z v

@4v21nk
2#

cos~2vs! ~20!

and
0-3
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hk~s!5
4

ME
0

`dv

p
I ~v!Z nk

@4v21nk
2#

sin~2vs!. ~21!

The other two functions in Eq.~10! are defined as

h (2)~s!5(
n

l2hn
(2)~s!

52E
0

`dv

p
2I ~v!Z sin~2vs! ~22!

and

n (2)~s!5(
n

l2nn
(2)~s!

5E
0

`dv

p
I ~v!@~Z 221!1~Z 211!cos~2vs!#.

~23!

For the case of factorized initial conditions, Eq.~10! reduces
satisfactorily to the influence functional obtained by Huet al.
@4#.
ng
b

ou
ve
in
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III. THE PROPAGATOR

In the following, we use the influence functional obtain
in Sec. II with f (x)5x, i.e., with couplings linear in the
system coordinate, to get the propagator for the particle
harmonic potential and an additional anharmonic potenti

A. Harmonic potential

We consider the quantum particle in a harmonic potent

V~x!5Vh~x,t ![
1

2
Mv0

2x22xF~ t !, ~24!

in Eq. ~1!, whereF(t) is an external time-dependent forc
acting on the system. As in the paper by Grabert, Schram
and Ingold@8#, we assume that this force does not influen
the initial state, i.e.,

F~ t !50, t<0. ~25!

Now the propagatorJ in Eq. ~6! can be written as
J~xf ,xf8 ,t,xi ,xi8 ,x̄,x̄8!5
1

ZE DxDx8Dx̄ expH i

\E0

t

dsF1

2
Mẋ22V~x!G2

i

\E0

t

dsF1

2
Mẋ822V~x8!G

2
1

\E0

\b

dtF1

2
Mẋ̄ 21V~ x̄!G2

i

\E0

t

dsdV~x!1
i

\E0

t

dsdV~x8!2
1

\E0

\b

dtdV̄~ x̄!

1
1

2\E0

\b

dtE
0

\b

dsk(2)~t2s!x̄~t!x̄~s!1
i

\E0

t

dsE
0

\b

dtK* (2)~s2 i t!x̄~t!@x~s!2x8~s!#

2
i

\E0

t

dsE
0

s

du@x~s!2x8~s!#h (2)~s2u!@x~u!1x8~u!#

2
1

\E0

t

dsE
0

s

du@x~s!2x8~s!#n (2)~s2u!@x~u!2x8~u!#J , ~26!
whereZ is a normalization constant. All the terms appeari
in J have been defined in the preceding section. It can
seen that the functional integrals in Eq.~26! @with f (x)5x

and f ( x̄)5 x̄] are Gaussian and hence can be worked
using the fact that significant contribution to the effecti
action comes from the minimal action paths. Proceeding
manner similar to Grabert, Schramm, and Ingold@8#, we get
the propagator as

J5
1

Z
expH i

\ ( ~r f ,qf ,t,r i ,qi , r̄ ,q̄!J , ~27!

where
e

t

a

i

\ ( ~r f ,qf ,t,r i ,qi , r̄ ,q̄!

52~a1r̄ 21a2q̄2!1 ia3~qfr f1qir i !1 ia4qir f

1 ia5qfr i1 ia6qi r̄ 2a7qiq̄1 ia8qf r̄ 2a9qfq̄

2~a10qi
21a11qiqf1a12qf

2!1 ia13qi1 ia14qf ,

~28!

with

q~s!5x~s!2x8~s!, r ~s!5
x~s!1x8~s!

2
, ~29!
0-4
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q~0!5xi2xi85qi , r ~0!5
xi1xi8

2
5r i , ~30!

q~ t !5xf2xf85qf , r ~ t !5
xf1xf8

2
5r f , ~31!

q̄5 x̄2 x̄8, r̄ 5
x̄1 x̄8

2
. ~32!

The various coefficients on the right hand side~rhs! of Eq.
~28! are

a15
M

2\` , a25
M

2\
V (2), a35

M

\

Ġ1~ t !

G1~ t !
,

a452
M

\

1

G1~ t !
, a55

2M

\

1

G2~ t !
, a65

M

\
C1

(2)1~ t !,

a752
M

\
C2

(2)1~ t !, a85
M

\
C1

(2)2~ t !,

a952
M

\
C2

(2)2~ t !,

a105
M

2\
R(2)11~ t !, a115

M

\
R(2)12~ t !,

a125
M

2\
R(2)22~ t !, a135

1

\E0

t

ds
G1~ t2s!

G1~ t !
F1~s!,

a145
1

\E0

t

ds
G2~s!

G2~ t !
F1~s!, ~33!

with

`5
1

\b (
k52`

`

uk
(2) , ~34!

uk
(2)5~nk

21v0
22zk

(2)!21, ~35!

nk5
2pk

\b
, ~36!

V (2)5
1

\b (
k52`

`

uk
(2)~v0

22zk
(2)!, ~37!

Cm
(2)1~ t !5E

0

t

ds
G1~ t2s!

G1~ t !
Cm

(2)~s!, m51,2, ~38!
05612
Cm
(2)2~ t !5E

0

t

ds
G2~s!

G2~ t !
Cm

(2)~s!, m51,2, ~39!

C1
(2)~s!5

1

\b` (
k52`

`

uk
(2)gk~s!, ~40!

C2
(2)~s!5

1

\b (
k52`

`

nkuk
(2)hk~s!, ~41!

R(2)12~ t !5E
0

t

dsE
0

t

duR(2)~s,u!
G1~ t2s!

G1~ t !

G2~u!

G2~ t !
,

~42!

R(2)~s,u!5R(2)8~s,u!1
n (2)~s2u!

M
, ~43!

R(2)8~s,u!52`C1
(2)~s!C1

(2)~u!1
1

\b (
k52`

`

uk
(2)@gk~s!gk~u!

2hk~s!hk~u!#, ~44!

whereG1(t) is a solution of the equation

r̈ 1
2

ME
0

s

duh (2)~s2u!r ~u!1v0
2r 50, ~45!

satisfyingG1(0)50 andĠ1(0)51,

G2~s!5
G1~ t2s!Ġ1~ t !2G1~ t !Ġ1~ t2s!

G1~ t !G̈1~ t !2Ġ1
2 ~ t !

~46!

and

F1~s!5FF~s!2E
0

`dv

p
rD~v!cothS \v

2kBTD G . ~47!

The normalization constantZ in Eq. ~27! is found to be

Z~ t !5S 2p\

M D 3/2

`1/2uG1~ t !u. ~48!

Equations~27!–~48! determine the propagator. It is to b
noticed that it has the same form as the corresponding lin
coupling case@8# but now with rather complicated coeffi
cients, and the coefficients have an additional temperat
dependent term coth(\v/2kBT), which appears in the
nonlinear coupling problem even for factorized initi
conditions@4#.
0-5
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B. Additional anharmonic potential

We now compute the propagator for the quantum part
in a potential

V~x!5Vh~x!1Va~x!, ~49!

whereVh(x) is the harmonic potential~24! and

Va~x!52V0cos~k0x! ~50!

is the anharmonic potential. The potential

Vw~x![2V0cos~k0x!2xF ~51!

is called the washboard potential, withF being a time-
independentexternal force. The washboard potential gives
idealized description of the motion of a heavy charged p
ticle in the interior or at the surface of a metal@10#, where
the underlying crystal provides the periodic potential@the
first term on the rhs of Eq.~51!# with lattice constant 2p/k0,
and there is a potential drop 2pF/k0 per period@the second
term on the rhs of Eq.~51!# because of friction with the
conduction electrons. The washboard potential is often u
to model a single Josephson tunnel junction.

The propagatorJ as given in Eq.~6! has terms such as

expH 2
i

\E0

t

ds Va~x!J , expH i

\E0

t

ds Va~x8!J ,

expH 2
1

\E0

\b

dt Va„x̄~t!…J .

Because of the nonlinearities that enter due toVa(x), a direct
evaluation of the functional integrations inJ is not possible.
However, proceeding in a manner suggested by Fisher
Zwerger@10#, we write

expH 2
i

\E0

t

ds Va~x!J
5 (

n150

` S iV0

2\ D n1

(
$ei %

E
0

t

dsn1
•••E

0

s3
ds2E

0

s2
ds1

3expH 2
i

\E0

t

ds r~s!x~s!J , ~52!

where we have introducedn1 variables or ‘‘charges’’ei with
a ‘‘charge density’’

r~s!5\k0(
i 51

n1

eid~s2si !, ei561. ~53!

Similarly, expanding the other two terms inJ with two new
sets of chargessk andl j , we have
05612
e

n
r-

ed

nd

expH i

\E0

t

ds Va„x8~s!…J
5 (

n250

` S 2
iV0

2\ D n2

(
$sk%

E
0

t

dsn2
8 •••E

0

s38ds28E
0

s28ds18

3expH i

\E0

t

dsr8~s!x8~s!J , ~54!

where

r8~s!5\k0(
k51

n2

skd~s2sk8!, sk561 ~55!

and

expH 2
1

\E0

\b

dt Va„x̄~t!…J
5expH V0

\ E
0

\b

dt cos„k0x̄~t!…J
5 (

n350

` S V0

2\ D n3

(
$l j %

E
0

\b

dtn3
•••E

0

t3
dt2E

0

t2
dt1

3expH 2
1

\E0

\b

dt r̄~t!x̄~t!J , ~56!

where

r̄~t!5 i\k0(
j 51

n3

l jd~t2t j !, l j561. ~57!

We now use Eq.~6! to have the propagator as

J~xf ,xf8 ,t,xi ,xi8 ,x̄,x̄8!

5 (
n1 ,n2 ,n350

` S iV0

2\ D n1S 2 iV0

2\ D n2S V0

2\ D n3

3 (
$ei ,sk ,l j %

E dsn1
•••E ds2E ds1E dsn2

8 •••

3E ds28E ds18E dtn3
•••E dt2

3E dt1J1~xf ,xf8 ,t,xi ,xi8 ,x̄,x̄8;r,r8,r̄ !. ~58!

Here we assume that the criterion of uniform convergence
established by Chenet al. @11# is satisfied in that there exist
a V0, say V̄, such that forV0,V̄ the above series has
uniform convergence. In Eq.~58!, J1 contains the functiona
integrals,
0-6
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J1~xf ,xf8 ,t,xi ,xi8 ,x̄,x̄8;r,r8,r̄ !5
1

ZE DxDx8Dx̄ expH i

\E0

t

dsF1

2
Mẋ22

1

2
Mv0

2x2G2
i

\E0

t

dsF1

2
Mẋ822

1

2
Mv0

2x82G
2

1

\E0

\b

dtF1

2
Mẋ̄ 21

1

2
Mv0

2x̄ 2G1
i

\E0

t

dsF1~s!@x~s!2x8~s!#2
i

\E0

t

dsr~s!x~s!

1
i

\E0

t

dsr8~s!x8~s!2
1

\E0

\b

dt r̄~t!x̄~t!1
1

2\E0

\b

dtE
0

\b

dsk(2)~t2s!x̄~t!x̄~s!

1
i

\E0

t

dsE
0

\b

dt K* (2)~s2 i t!x̄~t!@x~s!2x8~s!#2
i

\E0

t

dsE
0

s

du@x~s!2x8~s!#

3h (2)~s2u!@x~u!1x8~u!#2
1

\E0

t

dsE
0

s

du@x~s!2x8~s!#n (2)~s2u!@x~u!2x8~u!#J .

~59!

The advantage of using the representations in Eqs.~52!, ~54!, and~56! is that the functional integrals in Eq.~59! are Gaussian
and can be evaluated exactly. Proceeding in the same manner as before, we have

J1~xf ,xf8 ,t,xi ,xi8 ,x̄,x̄8;r,r8,r̄ !5
M

2p\G1~ t !S 2p\`
M D 1/2 expH `

2\M
B2J exp$2P%expH 2

M

\ F 1

2` r̄ 21
V (2)

2
q̄ 2G2

iM

\2b` r̄r6

1
iM

\2b
q̄r71

iM

\
~qfr f1qir i !

Ġ1~ t !

G1~ t !
2

iM

\ S qfr i

1

G2~ t !
1qir f

1

G1~ t ! D1
iM

\
r̄ ~qiC1

(2)1~ t !

1qfC1
(2)2~ t !!1

M

\
q̄~qiC2

(2)1~ t !1qfC2
(2)2~ t !!2

M

2\
@qi

2R(2)11~ t !12qiqfR
(2)12~ t !

1qf
2R(2)22~ t !#1

i

\E0

t

dsFqi

G1~ t2s!

G1~ t !
1qf

G2~s!

G2~ t ! GFF1~s!2
1

2
r2~s!1r4~s!

2 i @2r3~s!1r5~s!#G1
M

\
qiE

0

t

dsE
0

t

duR(2)~s,u!@ f 1~u!2 f 2~u!#
G1~ t2s!

G1~ t !

1
M

\
qfE

0

t

dsE
0

t

duR(2)~s,u!@ f 1~u!2 f 2~u!#
G2~s!

G2~ t !
2

i

\
r fE

0

t

dsr1~s!
G1~s!

G1~ t !

2
i

\
r iE

0

t

dsr1~s!
G2~ t2s!

G2~ t !
2

M

\
q̄E

0

t

ds@ f 1~s!2 f 2~s!#C2
(2)~s!

2
i

\
r̄ E

0

t

dsE
0

s

dur1~s!G1~s2u!C1
(2)~u!1

i

\
r̄ E

0

t

dsE
0

t

dur1~s!
G1~s!

G1~ t !
G1~ t2u!C1

(2)~u!J .

~60!
Here q(s), r (s), and q̄, r̄ are as defined in Eqs.~29! and
~32!, respectively, and

r1~s!5r~s!2r8~s!, ~61!

r2~s!5r~s!1r8~s!, ~62!

r3~s!5
k0

\b2` (
k52`

`

uk
(2)2S (

j 51

n3

l jcos~nkt j !D gk~s!,

~63!
05612
r4~s!5
k0

b (
k52`

`

uk
(2)S (

j 51

n3

l jsin~nkt j !D hk~s!, ~64!

r5~s!5
k0

b (
k52`

`

uk
(2)S (

j 51

n3

l jcos~nkt j !D gk~s!, ~65!

r65
\k0

M (
k52`

`

uk
(2)S (

j 51

n3

l jcos~nkt j !D , ~66!
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r75
\k0

M (
k52`

`

uk
(2)nkS (

j 51

n3

l jsin~nkt j !D , ~67!

f 1~s!5
1

ME
0

t2s

duG1~ t2s2u!r1~u!, ~68!

f 2~s!5
1

M

G1~ t2s!

G1~ t ! E
0

t

duG1~ t2u!r1~u!, ~69!

G1(t) andG2(s) are as given by Eqs.~45! and~46!, respec-
tively. Also,
ra

io

l
in
q

a
th
di
e
r
b
r
a

e
u
in
pe
tly

he

05612
B5F M

\b` r61
Ġ1~ t !

G1~ t !E0

t

dsr1~s!G1~s!

1C1
(2)1~ t !E

0

t

dsr1~s!G1~s!1E
0

t

dsr1~s!
G2~ t2s!

G2~ t !

1E
0

t

dsE
0

s

dur1~s!G1~s2u!C1
(2)~u!

2E
0

t

dsE
0

t

dur1~s!
G1~s!

G1~ t !
G1~ t2u!C1

(2)~u!G , ~70!
P51
1

\M S E
0

t

dsr1~s!G1~s! D 2F2
V (2)

2
1C2

(2)1~ t !2
1

2
R(2)11~ t !G2

i

\2b
r7E

0

t

dsr1~s!G1~s!

2
i

\M S E
0

t

dsr1~s!G1~s! D E
0

t

du
G1~ t2u!

G1~ t ! FF1~u!2
1

2
r2~u!1r4~u!2 i @2r3~u!1r5~u!#G

2
1

\ S E
0

t

dsr1~s!G1~s! D E
0

t

duE
0

t

dvR(2)~u,v !@ f 1~v !2 f 2~v !#
G1~ t2u!

G1~ t !

1
1

\S E
0

t

dsr1~s!G1~s! D E
0

t

du@ f 1~u!2 f 2~u!#C2
(2)~u!. ~71!
tial.
tor-
r-
g

he

on
All the other terms are as given before. Equation~58! along
with Eqs.~60! to ~71! give the required propagator. The ext
terms in Eq.~60! compared to Eq.~28! come primarily due
to the additional inhomogeneities in the equations of mot
arising from the charge densities~53!, ~55!, and~57! for both
the imaginary-time paths~because of nonfactorizable initia
states! and the real time paths. It can be seen that dropp
the anharmonicity we recover the propagator given by E
~27! and ~28! in Sec. III A.

This completes the derivation of the propagator for a p
ticle in a harmonic plus an anharmonic potential where
system-environment coupling is nonlinear and initial con
tions are quite general. The influence functional is obtain
up to the second order of perturbation. The treatment fo
quantum particle in the washboard potential was given
Chenet al. @11# using generalized initial conditions, but fo
linear system-environment couplings. They assumed
Ohmic spectral density of the reservoir for which the gen
alized initial state happens to be equivalent to the prod
~factorized! initial state. Our treatment is more general,
that we do not make any assumptions on the reservoir s
tral density, and the various terms are worked out explici

IV. APPLICATIONS

In this section we use propagator~27! obtained in Sec.
III A to derive the master equation for the dynamics of t
n

g
s.

r-
e
-
d
a
y

n
r-
ct

c-
.

reduced density matrix of the system in a harmonic poten
We first derive the master equation for a general nonfac
izable initial condition and then consider the specific ‘‘the
mal’’ initial condition @6#. We also derive the correspondin
Wigner equations.

A. General nonfactorizable initial condition

1. The master equation

The time variation of the reduced density matrix of t
oscillator is given as

]

]t
r~qf ,r f ,t !5E dqidridq̄dr̄

]

]t
J~qf ,r f ,t,qi ,r i ,q̄, r̄ !

3l0~qi ,r i ,q̄, r̄ !, ~72!

wherel0 is the preparation function describing the deviati
of the initial ~nonequilibrium! state from the equilibrium dis-
tribution. Using Eqs.~27! and ~28! for J and the simplified
method of Paz@13#, we get the master equation as
0-8
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]

]t
r~xf ,xf8 ,t !5 i F \

2M
~]xf

2 2]x
f8

2
!2

u~ t !

\
~xf2xf8!2

v2~ t !

2\
~xf

22xf8
2!Gr~xf ,xf8 ,t !2

1

\
G~ t !~xf2xf8!~]xf

2]x
f8
!r~xf ,xf8 ,t !

2
1

\2 Dpp~ t !~xf2xf8!2r~xf ,xf8 ,t !2
i

\
@Dxp~ t !1Dpx~ t !#~xf2xf8!~]xf

1]x
f8
!r~xf ,xf8 ,t !

2
1

\
Dxx~ t !~]xf

1]x
f8
!2r~xf ,xf8 ,t !1

i

\
C̃1~ t !~xf2xf8!r1~xf ,xf8 ,t !2

1

\
C̃2~ t !~xf2xf8!r2~xf ,xf8 ,t !. ~73!
sin
s

tten
Here we have reverted back to the original coordinates u
Eq. ~29!, andp is the momentum of the particle. The variou
coefficients in Eq.~73! are

u~ t !5\F ȧ5a14

a5
2ȧ14G , ~74!

v2~ t !5\Fa3ȧ5

a5
2ȧ3G , ~75!

G~ t !5
\

2a5
F ȧ3a3

a4
2ȧ5G , ~76!

which is the dissipation term,

Dpp~ t !5\2F ȧ121
2ȧ3a3a12

a4a5
2

ȧ3a11a3
2

a4
2a5

1
ȧ5a11a3

a4a5

2
2ȧ5a12

a5
1

a3
2ȧ10

a4
2

2
ȧ11a3

a4
G , ~77!

which causes decoherence inx,

Dxp~ t !1Dpx~ t !5\F2ȧ3a12

a4a5
2

2ȧ3a3a11

a4
2a5

1
ȧ5a11

a4a5

1
2ȧ10a3

a4
2

2
ȧ11

a4
G , ~78!

which is the anomalous diffusion term,

Dxx~ t !5\F ȧ3a11

a4
2a5

2
ȧ10

a4
2 G , ~79!

which generates decoherence inp,

C̃1~ t !5\F ȧ82
ȧ5a8

a5
G , ~80!

which causes inhomogeneity in the master equation,

C̃2~ t !5\F ȧ92
ȧ5a9

a5
G , ~81!

which causes inhomogeneity in the master equation,
05612
g
r1~xf ,xf8 ,t !5E dxidxi8dq̄dr̄ r̄ J~xf ,xf8 ,t,xi ,xi8 ,q̄, r̄ !

3l0~xi ,xi8 ,q̄, r̄ !, ~82!

and

r2~xf ,xf8 ,t !5E dxidxi8dq̄dr̄ q̄J~xf ,xf8 ,t,xi ,xi8 ,q̄, r̄ !

3l0~xi ,xi8 ,q̄, r̄ !. ~83!

The above coefficients of the master equation can be wri
in a more compact form as follows:

G~ t !52
\

2

Ẇ~ t !

W~ t !
, ~84!

where

W~ t !5G1~ t !G̈1~ t !2Ġ1
2 ~ t !, ~85!

v2~ t !52
M

G1~ t ! F2

\
Ġ1~ t !G~ t !1G̈1~ t !G

5M
@Ġ1~ t !Ġ̈1~ t !2G̈1

2 ~ t !#

W~ t !
, ~86!

u~ t !52
2

\
G~ t !E

0

t

ds
G2~S!

G2~ t !
F1~s!2F1~ t !

2E
0

t

dsF G̈1~ t2s!2
G1~ t2s!

G1~ t !
G̈1~ t !GF1~s!,

~87!

C̃1~ t !5\F] t
21

2

\
G~ t !] t1

1

M
v2~ t !G@G1~ t !a6~ t !#,

~88!

C̃2~ t !5\F] t
21

2

\
G~ t !] t1

1

M
v2~ t !G@G1~ t !a7~ t !#,

~89!

Dxx~ t !50, ~90!
0-9
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Dpp~ t !5\M F] t8
2

1
2

\
G~ t !] t81

1

M
v2~ t !G ]

]t
U (2)~ t,t8!u t5t8 ,

~91!

Dxp~ t !1Dpx~ t !5\F] t8
2

1
2

\
G~ t !] t81

1

M
v2~ t !G

3U (2)~ t,t8!u t5t8 , ~92!

with

U (2)~ t,t8!5E
0

t

dsE
0

t8
du G1~ t2s!R(2)~s,u!G1~ t82u!.

~93!

It can be seen that the above equations have structures
lar to those for the linear coupling case@15#, though the
coefficients here are quite complicated. The last two terms
the rhs of Eq.~73! make the master equationinhomogeneous.
This implies that for generalized initial conditions, in th
case of nonlinear system-environment couplings, it is
possible to obtain an exact Liouville operatorL, where L
satisfies the equation

]r

]t
5Lr. ~94!

This is a feature of nonfactorizable initial conditions even
the case of linear system-environment couplings@14#.

2. The Wigner equation

The Wigner equation is obtained from the master equa
by writing @16#

]

]t
W~p,x,t !5

1

2p\E2`

`

dye( i /\)pyK x2
1

2
yU ]

]t
rUx1

1

2
yL .

~95!

Using Eq.~73! in Eq. ~95! we get

]W

]t
52

1

M

]

]x
pW1v2~ t !

]

]p
xW1u~ t !

]

]p
W

1Dpp~ t !
]2

]p2 W2
1

\
Dxx~ t !

]2

]x2 W

1@Dxp~ t !1Dpx~ t !#
]2

]x]p
W1

2

\
G~ t !

]

]p
pW

2C̃1~ t !
]

]p
W12 iC̃2~ t !

]

]p
W2 , ~96!

where

W1~p,x,t !5
1

2p\E2`

`

dye~ i /\!pyK x2
1

2
yur1ux1

1

2
yL

~97!

and
05612
mi-

n

t

r

n

W2~p,x,t !5
1

2p\E2`

`

dye~ i /\!pyK x2
1

2
yur2ux1

1

2
yL .

~98!

The Wigner equation may be employed for calculation
various correlation functions in a quasiclassical manner. T
equation obtained here for nonlinear couplings and non
torizable initial conditions has wider applicability than at o
tained earlier by Romero and Paz@15# for the linear coupling
case.

B. Thermal initial condition

We now consider the simple case of a thermal initial co
dition @6#, for which the off-diagonal elements of operato
in position space of the particle are suppressed in ther
equilibrium.

1. The master equation

The thermal initial condition has the preparation functi
@14#

l0~qi ,r i ,q̄, r̄ !5 f ~qi ,r i !d~ q̄2qi !d~ r̄ 2r i ! ~99!

in Eq. ~72!. Thus, in Eq.~73!, we now have

r1~qf ,r f ,t !5E dqidri r iJ~qf ,r f ,t,qi ,r i ,qi ,r i ! f ~qi ,r i !

~100!

@cf. Eq. ~82!# and

r2~qf ,r f ,t !5E dqidriqiJ~qf ,r f ,t,qi ,r i ,qi ,r i ! f ~qi ,r i !

~101!

@cf. Eq. ~83!#. Using Eq.~99! the reduced density matrix o
the quantum Brownian oscillator becomes

r~qf ,r f ,t !5E dqidriJ~qf ,r f ,t,qi ,r i ,qi ,r i ! f ~qi ,r i !.

~102!

Now, from Eq.~27! we have

J~qf ,r f ,t,qi ,r i ,qi ,r i !

5a0expH i

\ ( ~qf ,r f ,t,qi ,r i ,qi ,r i !J ,

~103!

wherea051/Z with Z given by Eq.~48!, and from Eq.~28!,
0-10
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i

\ ( ~qf ,r f ,t,qi ,r i ,qi ,r i !

52~a1r i
21a2qi

2!1 ia3~qfr f1qir i !1 ia4qir f

1 ia5qfr i1 ia6qir i2a7qi
21 ia8qfr i2a9qfqi

2~a10qi
21a11qiqf1a12qf

2!1 ia13qi1 ia14qf .

~104!

Thus we have

r1~qf ,r f ,t !52
i

~a51a8!
]qf

r~qf ,r f ,t !

2
1

~a51a8!
a3r fr~qf ,r f ,t !

2
~a91a11!

a4~a51a8!
~] r f

2 ia3qf !r~qf ,r f ,t !

2
2ia12

~a51a8!
qfr~qf ,r f ,t !

2
a14

~a51a8!
r~qf ,r f ,t ! ~105!

and

r2~qf ,r f ,t !5
2 i

a4
~] r f

2 ia3qf !r~qf ,r f ,t !. ~106!

Using Eqs.~105! and ~106! in Eq. ~73!, and with Dxx(t)
50 @as in Eq.~90!#, we obtain the master equation for th
case of thermal initial conditions as

]

]t
r~xf ,xf8 ,t !5 i F \

2M
~]xf

2 2]x
f8

2
!2

ũ~ t !

\
~xf2xf8!

2
ṽ2~ t !

2\
~xf

22xf8
2!Gr~xf ,xf8 ,t !

2
1

\
G̃~ t !~xf2xf8!~]xf

2]x
f8
!r~xf ,xf8 ,t !

2
1

\2D̃pp~ t !~xf2xf8!2r~xf ,xf8 ,t !

2
i

\
@D̃xp~ t !1D̃px~ t !#~xf2xf8!~]xf

1]x
f8
!

3r~xf ,xf8 ,t !. ~107!

This has the form of an exact master equation, i.e., there
no inhomogeneities, and in this case an exact Liouville
erator L exists. This is in agreement with the findings
Karrlein and Grabert@14# for thermal initial conditions in the
linear coupling case. The inhomogeneities in the ma
equation emerge only for the general nonfactorizable ini
conditions.
05612
re
-

er
l

2. The Wigner equation

Proceeding as before, we obtain the Wigner equation fr
the master equation~107! as

]W

]t
52

1

M

]

]x
pW1ṽ2~ t !

]

]p
xW1 ũ~ t !

]

]p
W

1D̃pp~ t !
]2

]p2 W1@D̃xp~ t !1D̃px~ t !#
]2

]x]p
W

1
2

\
G̃~ t !

]

]p
pW. ~108!

The coefficients on the rhs of Eq.~108! are

ũ~ t !5u~ t !1
a14

~a51a8!
C̃1~ t !, ~109!

ṽ2~ t !5v2~ t !1
a3

~a51a8!
C̃1~ t !, ~110!

G̃~ t !5G~ t !2
C̃1~ t !

2~a51a8!
, ~111!

D̃pp~ t !5Dpp~ t !1\Fa3~a91a11!

a4~a51a8!
C̃1~ t !

22
a12

~a51a8!
C̃1~ t !2

a3

a4
C̃2~ t !G , ~112!

D̃xp~ t !1D̃px~ t !5@Dxp~ t !1Dpx~ t !#

1F ~a91a11!

a4~a51a8!
C̃1~ t !2

C̃2~ t !

a4
G .

~113!

Equation~108! has the form of a generalized Fokker-Plan
equation.

Thus we see that nonlinearity in the environment up
second-order perturbation doesnot introduce any nonlinear
behavior in the system for either factorized initial conditio
@4# or nonfactorizable initial conditions.

V. FLUCTUATION-DISSIPATION THEOREM

The real and imaginary parts of the coordinate autoco
lation function of the quantum particle are not independ
and should be related by a generalized fluctuation-dissipa
theorem. In this section we establish a fluctuation-dissipa
theorem using the propagator in Eq.~27! for the quantum
Brownian particle in a harmonic potential. Proceeding as
Grabertet al. @8#, we have the response functionx(t) of the
quantum oscillator as

x~ t !5
1

M
G1~ t ! ~114!

and the coordinate autocorrelation functionC(t) as
0-11
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C~ t !5^x~ t !x&5S~ t !1 iA~ t !, ~115!

whereS(t) is the symmetrized correlation given by

S~ t !5
1

2
^x~ t !x1xx~ t !&5

\

M
`@Ġ1~ t !1G1~ t !C1

(2)1~ t !#,

~116!

andA(t) is the antisymmetrized correlation given by

A~ t !5
1

2i
^x~ t !x2xx~ t !&52

\

2
x~ t !, t>0, ~117!

with x(t) given by Eq.~114!, these having the same form a
in the linear coupling case, and

C1
(2)1~ t !5E

0

t

ds
G1~ t2s!

G1~ t !
C1

(2)~s!

@Eq. ~38! with m51]. Substitutinguk
(2) from Eq. ~35!, zk

(2)

from Eq. ~17!, h (2)(s) from Eq. ~22! and using

Ĝ1~z![L$G1~ t !%5
1

Fz21
2

M
ĥ (2)~z!1v0

2G ~118!

from Eq. ~45!, we get

uk
(2)5Ĝ1~ unku!, ~119!

G1~ t !C1
(2)1~ t !5

1

\b` (
k52`

`

Ĝ1~ unku!E
0

t

dsG1~ t2s!gk~s!,

~120!

and

Ŝ~z![L$S~ t !%5
\`
M

zĜ1~z!

1
1

bM (
k52`

`

Ĝ1~ unku!Ĝ1~z!ĝk~z!, ~121!

whereL stands for the Laplace transform. From Eq.~20!, we
have

gk~s!5
8

ME
0

`dv

p
I ~v!cothS \v

2kBTD v

@4v21nk
2#

cos~2vs!

5ḡ (2)~s!2 z̄k
(2)~s!, ~122!

where

ḡ (2)~s!5
2

ME
0

`dv

p

I ~v!

v
cothS \v

2kBTD cos~2vs!

~123!

and
05612
z̄k
(2)~s!5

2

ME
0

`dv

p
I ~v!cothS \v

2kBTD
3

nk
2

v@4v21nk
2#

cos~2vs!. ~124!

Thus, from Eq.~121!, we get

Ŝ~z!5
1

bM (
k52`

`

Ĝ1~ unku!Ĝ1~z!H z1 ĝ̄ (2)~z!

2
z

~z22nk
2!

unku ĝ̄ (2)~ unku!1
nk

2

~z22nk
2!

ĝ̄ (2)~z!J .

~125!

Now, using Eq.~118!, we have

ĥ (2)~z!5
M

2Ĝ1~z!
2

M

2
~z21v0

2!. ~126!

Also, using Eqs.~22! and ~123!, we have

ĥ (2)~z!5
M

2
$zĝ̄ (2)~z!2ḡ (2)~0!%, ~127!

where

ḡ (2)~0!5
2

ME
0

`dv

p

I ~v!

v
cothS \v

2kBTD . ~128!

Combining Eqs.~126! and ~127!, we have

ĝ̄ (2)~z!5
1

zĜ1~z!
2

~z21v0
2!

z
1

ḡ (2)~0!

z
. ~129!

Using Eq.~129! in Eq. ~125! we get

Ŝ~z!5
1

bM (
k52`

`
z

~nk
22z2!

@Ĝ1~z!2Ĝ1~ unku!#.

~130!

This can then be cast in the form

S̃~v!5\cothS \v

2kBTD x̃9~v!, ~131!

which is the usual statement of the fluctuation-dissipat
theorem, whereS̃(v) is the Fourier transform ofS(t):

S̃~v!5Ŝ~ iv!1Ŝ~2 iv! ~132!

and

x̃9~v!5
i

2
@ x̂~ iv!2x̂~2 iv!#, ~133!

with
0-12
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x̃~v!5E
2`

`

dtx~ t !eivt5x̂~2 iv!, ~134!

wherex(t) is the response function~114!.
It is thus seen that for our case of couplings nonlinea

the environment coordinates and treated up to second o
of perturbation, the form of the fluctuation-dissipation the
rem is preserved for factorized initial conditions@4# as well
as general nonfactorizable initial conditions. The proportio
ality of S̃(v) and x̃9(v) illustrates the close connection b
tween fluctuation and dissipation mechanisms acting on
quantum Brownian oscillator. That the fluctuation-dissipat
relation in our case is not violated serves as an impor
check of the correctness of our calculations.

VI. SUMMARY

In this paper we have investigated the quantum Brown
motion ~QBM! with couplings nonlinear~quadratic! in the
environment coordinates, treating it up to second order
perturbation for generalnonfactorizableinitial conditions.
We have thus extended the work of Huet al. @4# and Brun
@5# who set out the basic foundations for handling nonlin
QBM with factorizedinitial conditions.

We have constructed the influence functional for nonl
ear interactions up to second order of perturbation with g
eralized initial conditions. We have then used the influen
functional, restricting the nonlinearity to the environment,
get the propagator for the particle in a harmonic potentia
well as for the particle in an additional anharmonic potent
called the washboard potential used to describe the ideal
tion of a heavy charged particle in a metal. For the harmo
potential case, the propagator is similar to at in the co
sponding linear coupling case@8# even though the coeffi
cients are now more complicated—among other things h
ing an additional temperature-dependent factor in them.
the case of the particle in the washboard potential, we h
been able to work out all the terms in the propagator exp
itly. This is a step forward from the previous treatment
als
to
n

ue
ms
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Chen et al. @11# of the case of linear system-environme
couplings and an Ohmic spectrum of the reservoir.

From the propagator for the particle in a harmonic pote
tial we have obtained the master equation and the Wig
equation. Both these equations exhibited inhomogenei
which imply that it is not possible to construct an exact Lio
ville operator for generalized initial conditions for either th
linear coupling case of Karrlein and Grabert@14#, Romero
and Paz@15#, or when there is nonlinearity in the environ
ment coordinate in the system-environment interaction.
have then considered the specific case of a simple in
condition, called the thermal initial condition, where an exa
master equation and a Wigner equation resembling the g
eralized Fokker-Planck equation are obtained. Thus un
such simpler initial conditions, an exact Liouville operat
exists for the linear@14# as well as the nonlinear couplin
case.

We have also used the propagator for the quantum Bro
ian particle in a harmonic potential to establish a generali
fluctuation-dissipation theorem. Even though the coefficie
in our propagator are more complicated than the correspo
ing linear coupling case, the form of the fluctuatio
dissipation relation is found to be the same as that in
linear coupling case, for both factorized@4# and nonfactoriz-
able initial conditions, confirming that the results are phy
cally consistent, and the same physical mechanism is res
sible both for the fluctuations of the position of the quantu
oscillator and for its damping.

The results presented here are applicable to all the ph
cal problems modeled by the quantum Brownian mot
with initially correlated and nonlinearly coupled environ
ment.
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