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General quantum Brownian motion with initially correlated and nonlinearly coupled environment
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The dynamics of an open quantum system exhibiting the quantum Brownian motion is analyzed when the
coupling between the system and its environment is nonlinear, and the system and the resemiialbre
correlated For couplings quadratic in the environment variables, the influence functional for the system is
obtained perturbatively up to second order in the coupling constant, and then the propagator is explicitly
evaluated when the particle is under the influence of a harmonic potential and an additional anharmonic
potential, the so-called washboard potential. As an application of the propagator, the master equation and the
Wigner equation are obtained for the quantum Brownian particle moving in a harmonic potential for the
generalized correlated initial condition, and then for the specific case of the simplified “thermal” initial
condition. The system is shown to obey the corresponding fluctuation-dissipation theorem.
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[. INTRODUCTION system in a Stern-Gerlach potential. There is no treatment
available in the literature for the quantum Brownian motion
The fluctuating or “Brownian” motion of a quantum par- with nonlinear system-environment couplings and general-
ticle coupled to an environment serves as a model for thézed nonfactorizable initial conditions, which is the aim of
investigation of observable macroscopic effects in openhe present work.
quantum systems. The problem is usually handled using the |n this work we use the influence functional to get the
influence functional method introduced by Feynman and Verpropagator for the problem when the particle is under the
non[1], where the object of interest is the reduced dynamicsnfluence of a harmonic potential, and also an anharmonic
of the system evolving under the influence of the environygtential, the so-called washboard potenfizd,11], which
ment, which is quantified by the influence functiofi2]. In  yodels the motion of a heavy charged particle in the interior
the model studied by Caldeira and Legdd}, the coordi- 1 4t the surface of a metal. From the propagator for the
nate of the particle was coupléidearly to an infinite set of j'{)article in a harmonic potential we obtain the master equa-

harmonic oscillators constituting the environment, and it wa on and the Wigner equation for a general nonfactorizable

6.“50 assum_ed that the system and the environment Were Mkitial condition, and then for the specific case of a “ther-
tially factorized. However, in general, there are physical

problems modeled by the quantum Brownian motion, whichmalk |n[|g]al Cﬁnd't'g]n’ |rf1ftrdqduced| b{ Hakltm ?ntﬂ Admbe_-t
involve some form of nonlinearity in the interaction between920Kariol, where the ofi-diagonal elements of the density

the system and its environment, for example, as pointed odf*alrix of the total system are suppressed and thus the tran-
by Hu, Paz, and Zhang#], in the strong-field conditions in §|ents QUe to the switching on of the system—enwrgnment
the early Universe when one cannot exercise any contrdltéraction att=0 are avoided. We also establish a
over the strength of the coupling. H al.[4] and Brun[5]  fluctuation-dissipation theorem connecting the dissipative
deve|0ped techniques to obtain the influence functional perand the ﬂUCtuating influences of the stochastic environment.
turbatively for the case of nonlinear system-environment The present paper is organized as follows. In Sec. Il we
coupling, but with the assumption of factorized initial condi- briefly present the influence functional for nonlinear system-
tions. environment coupling$12]. In particular, for interactions
There may be difficulties associated with the factorizedquadratic in the position of the environmental oscillators
(produc} initial state, which assumes a sudden artificialcoupled with an arbitrary functiofi(x) of the system, the
switch-on of the interaction between the system and the erinfluence functional is obtained up to second order in the
vironment at timet=0, and thus influences the subsequentcoupling constant. In Sec. Il we use the influence functional
short-time behavior of the system. The treatment of the quarnwith the simple form of coupling linear in the system coor-
tum Brownian motion with linear coupling has been gener-dinate, i.e., withf(x)=x, to obtain the propagator of the
alized to the physically reasonable initial condition of aparticle in a harmonic potenti@Bec. 11l A), and in an addi-
mixed state of the system and its environment by Hakim andional anharmonic “washboard” potentialSec. Il1B). In
Ambegaokar[6], Smith and Caldeirg[7], and Grabert, Sec. IVA we use the propagator in Sec. lll A to obtain the
Schramm, and Ingold8], and by us[9] for the case of a master equation and from it the Wigner equation for the
guantum Brownian oscillator. The inhomogeneities in the
master equation under generalized initial conditions disap-
* Author to whom correspondence should be addressed. Electronjaear for the case of the “thermal” initial conditions consid-
address: ghosh_r@vsnl.com ered in Sec. IVB. In Sec. V we establish a generalized
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fluctuation-dissipation theorem for our quantum BVOW”iannecting&(O)zq,qi with E(M;):qni describes initial corre-

oscillator. Finally in Sec. VI we summarize our results. lations between the system and its environmgjt The

ropagator in the path-integral representation is given b
I. INFLUENCE FUNCTIONAL propag P g P g y

Our model for the quantum Brownian motion consists of IXe XXX x—x’)=if DxDx’ D;ex;{i—(s [x]
the usual system of a quantum particle of milsgioving in TR z f S
a potentialV(x) and coupled to an environment of a set of

harmonic oscillators. The actions for the system and the en- _SS[X,]'HSEC[;]) E[x,x" x],
vironment are given by

1. (6)

Ss[x]zf ds[—MxZ—V(x) ) _

o |2 whereS4[x] is action(1) describing the system ar@“x]

and is its Euclidean counterpart.
Now, the influence functional is
S U N
SE[{qn}]:fodanl > Maln = 5 My@n Gy |, 2 Eixox’ x1=I1 B [xx' X]
n

where subscriptsS and E stand for systen{particle and i o
environment, respectively denotes the position of the par- =H ex;{% SALX X X]
ticle; m,, w,, andq, are the mass, frequency, and position n

of the nth environmental oscillator. The action for the i .
system-environment interaction [i4] = ex;{% SA[X,x",X]

: )

t
Ssd X,{dn}]= fodsE [—AChf(x)s], (3)  wheresA=3,5A, is the total influence action.
" As a consequence of the nonlinearity in the coupling, the

where is a dimensionless coupling constant introduced fornfluence functional cannot be obtained exactly. However,
later use as a small parameter in the perturbative expansiofSSUming that the parameteis small, we proceed as do Hu
k is an integer, the system-environment coupling is nonlineaff‘t al. [_4] to obtain the desired influence functional perturba-
with the environmental nonlinearity resting in the powenf ~ tively in orders ofA. _

g, and the system effect being described by a general func- The |nfluen9e funcnonall of an environment where th(_a en-
tion f(x). vironment oscillators are linearly coupled to the coordinate

The influence functional produced by the environment is®f the system i4]

O , _ = F(M[3,3',3]
FLx,x ,x]=];[ qunidqnidqanRnlf Dg,Dq;Dq, nl |

* _ An An , Qni —_
:deqnidqr;idqanRnlfq fanfq, fanJq, Da,

nj N

X EXF{;,L_(SE[{%}] +Ssd X,{an}]1— Sel{an}t]

i t
1 xexr{%[sE[an | asasau(s)- sela
~Sedx' {7 (SEL{an)] 0

- - fdsJ'(s)q'(s)} - 1[SEC[E]
+SSEIx{ant) |, @ 0 A "
[ —
assuming that initially the interacting system is in a thermal +f Bdr[—J(T)qn(T)]]
equilibrium state at a temperatufe= (kg8) 1, with 0
_ i t t
Un(t) =da()=0n,  An(0)=0n(AB)=dp, =<exp[g{fodsJ(s)qn(s)—fodsJ’(s)q,Q(s)
an(0)=ap(0)=ay, x(0)=x', x(fip)=x. (5) —ifﬁﬁdr\]_(r)a](r)} > | ®
0
0

In Eq. (4), Zgl is a normalization constant that ensures that

F=1 in the case of vanishi.ng interac_:tions. Supersdiptin where(- - - ), denotes the average of the function of the en-
Eqg. (4) stands for the Euclidean action, and the correspondyironment variables. Using this definition, the influence
ing imaginary-time functional integral over all paths con-  functional can be expressed [d<]
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ﬁn[x,x',?]=<exp['g{ssdx.qn]—SSE[x',q;]HSEE[ZE\]}D
0

T 0 oo _ s
=ex % Ss X,I 5J —Ss x’ —I—g‘f' X'ﬁ(S_J

We now consider the case where the coupling is quadratic in the environment variables, i.e kwReire Eq. (3). The
influence functional up to second ordernis then obtained in the continuum limit as

FM[3,9",39115.00 3=0) - (9)

- _ i [t i [t 1 (4B o 1 (4B hB _ _
F[x,x’,x]=exp{—;i—fods5V(x)+%fodséwx’)—%fo dr&V(x)+Efo deo dok@(7— o) f(x(7)f(X(0))
it B _ i [t s
+%—dest dTK*(Z)(S—ir)f(x(T))[f(x(s))—f(x’(s))]—;i—fodsfodu[f(x(s))—f(x’(s))]r;(z)(s—u)

1t s
XU+ (u)] = 5JOdSJOdU[f(X(S))—f(X’(S))]v(z)(S—U)[f(X(U))— f(X’(U))]’- (10

In Eq. (10), 8V(x), 8V(x'), 8V(x) are the potential and
shifts, given by

ANC
po(@)=3 w- o)y (“’) (15)
SV(X)=2, Vy(X)
" Also, in Eq.(10),
k@ (17— )= Z (z)e‘”k(T“’)Jrfw¥l(w)(22—l)
— 0
= f d—"’pa<w>2f<x>, (11) (16)
o T
with
SV(X')=2, 8Vy(x') (2)_ 8 [~de @
n gk M o I(w)Z[4(J)2+VE], (17)
and
<d ThN°C?(w)
- JO 7“’pD<w)Zf<xf), 12 (@)= oo o) (19

is the spectral density of the environment oscillators;
M=, Vo)

K*<2><s—|r>— 2 [9k(S) +hi(s)Je'
X)
*dw
- 2_
s B +JO —1(0)(2%-1) (19
=f — pplw) Zf(X), (13
o with
with
s)——f [4 2+ ]c032ws) (20
B ﬁwﬂ)_ I’( ho
Z—COI"(T =cot m) (14) and
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4 (=d
hk(s)sz wl(w)Z

sSin(2ws).
gkl
The other two functions in Eq10) are defined as

72(8)= 2 N n(s)

*dw ]
—f —2l(w) Zsin(2ws)
o
and

V(z)(s

)= N20P(s)

For the case of factorized initial conditions, Eg0)

*dw
fo — (w)[(Z2?2—1)+(Z%+1)cog2ws)].

PHYSICAL REVIEW B7, 056120 (2003

Ill. THE PROPAGATOR

21
@1 In the following, we use the influence functional obtained

in Sec. Il with f(x)=x, i.e., with couplings linear in the
system coordinate, to get the propagator for the particle in a
harmonic potential and an additional anharmonic potential.

A. Harmonic potential

(22) We consider the quantum particle in a harmonic potential,

V(x)=V(xt)EEM 22— xF(t 24
h\A, 2 wOX X ()1 ( )

in Eq. (1), whereF(t) is an external time-dependent force
acting on the system. As in the paper by Grabert, Schramm,
and Ingold[8], we assume that this force does not influence
the initial state, i.e.,

(23

=

F(t)=0, t=0. (25)

reduces

satisfactorily to the influence functional obtained by &tial.

[4].

Now the propagatod in Eqg. (6) can be written as

J(Xg . X1, 6%, % X, x") =

1 _
ZJ DxDx'Dx exp{

i1 .
gfods[Esz—V(x)

tjr o,
7 0d EMX —V(x")

Lpee [1 ) ] 0t i [t R 7 pe—
_ﬁJ'o dr EMX +V(x) —%fodsﬁv(x)Jr%fods&V(x )—% . d76V(X)

+ﬁ drf dok@(7—o)x(T)X(0) + — fdsf drK* @(s—in)x(7)[x(s)—x'(s)]

i rt s

—gfodsfodu[x(s)—x’(s)]n(z)(s—u)[x(u)+x’(u)]

17t s

—%fodsfodu[x(s)—x’(s)]v(z)(s—u)[x(u)—x’(u)]], (26)

whereZ is a normalization constant. All the terms appearing
in J have been defined in the preceding section. It can be

i -
g 2 (rf ok 1tvri Qi 1rvq)

seen that the functional integrals in E@6) [with f(x)=x

and f(;) =;] are Gaussian and hence can be

worked out = —(aql 2+ apQ?) +iaz(Qer ¢+ i) +i gl

using the fact that significant contribution to the effective

action comes from the minimal action paths. Proceeding in a
manner similar to Grabert, Schramm, and Ingd@{l we get

the propagator as

1 i -
JZZGXP[g > (6,0, 4r,00,7,9) |,

where

a70i0+i agdsl — gl

— (@007 + @110i0s + @1207) +i a0 +i @105,
(28)

+ | 0[5qfri + | anir—_

(27) with

X(s)+x'(s)
a(s)=x(s)=x'(s), r(s)=———— (29
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, Xi+xi
q(0)=x—=x{=d;, r(0)= 5 =i (30
, Xf+Xf
q(t)=Xi—X¢=qs, r(t)= =Ty, (31)
. x+¥x
=x—x', r= > (32

The various coefficients on the right hand sides) of Eq.

(28) are

M M M G, (t)

- 0@ _—f
=g 2T Ty Ty
M1 M 1 M,

GETET G ST Gy TR W

M M _2)-
ar==2-CE7(1), ag=7-C¥ (D),

M 5
- CE(),

dg=

M M
ay0=5RPTH(Y),  ay=2ROT(),

M 2)-— L(t—s)
alZ_ER (t) d13= hfds +(t) l(s)r
17t G_(s)
a14=%fod3r(t)|:1(3), (33)
with
net i u? (34)
hB e K
U= (gt wg— ) (35
2wk
Ty (36)
o@—t S u@(w2—?) 37)
hﬂ W k 0 k /1
t Gi(t—s)
(2)+ 4y = —T T2 —
Cylm () fods G. (D C.'(s), m=12, (38

PHYSICAL REVIEW E67, 056120(2003

(2) (2) —
Jd G (t) (s), m=12, (39
cPs)=7 ; A2 Uos), (40
c<2)(s)— Z UPh(s (41)

G, (t—s) G_(u)

R@*~(t)= fotdsfotdu R?)(s,u)

Gi(t) G_(t)’
(42
(2)(a_
R®)(s,u)=R®’(s,u) + # (43)

o0

, 1
R (s,w=-ACCE+ 72 2 uPlon(s)gu(u)

—h(s)h(w)], (44)

whereG, (t) is a solution of the equation

. 2 (s
r+mf duzy®(s—u)r(u)+wir=0, (45)
0
satisfyingG, (0)=0 andG. (0)=1,

G, (t—8)G, ()~ G, ()G, (t—s)
G, (DG, ()—G%(1)

G_(s)= (46)

and

Fi(s)=

h
F(s)— f —m(w)cotr(Zk‘B"Tﬂ 47

The normalization constamt in Eq. (27) is found to be

3/2
Z(t>=(%ﬁ) AYAG., (1)]. (48)

Equations(27)—(48) determine the propagator. It is to be
noticed that it has the same form as the corresponding linear
coupling casdg8] but now with rather complicated coeffi-
cients, and the coefficients have an additional temperature-
dependent term coth{/2kgT), which appears in the
nonlinear coupling problem even for factorized initial
conditions[4].
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B. Additional anharmonic potential i [t
We now compute the propagator for the quantum patrticle exp’ %Jods Valx (S))}
in a potential
” |vo) ft fs' fs'
= ds, --- | *ds; | “ds;
V(X) = Vp(X) + Va(X), (49) E: ( 2h {(Zk} A S M
. . . i [t
whereV,(x) is the harmonic potentidl4) and xexp[%f dSp’(s)x’(s)], (54)
0
Va(X) = —VcogkoX) (50)
where

is the anharmonic potential. The potential
n2

V(X)) = — Vocog ko) — xF (51) P'(S)Iﬁkokz::l o d(s—sy), o =*1 (55)

is called the washboard potential, with being a time-
independenéxternal force. The washboard potential gives an

idealized description of the motion of a heavy charged par-

ticle in the interior or at the surface of a mefal0], where exp[

hB _
| drva(xm))
0

SMEIN

the underlying crystal provides the periodic potenfidle
first term on the rhs of Eq51)] with lattice constant 2/kg,
and there is a potential dropaZE/k, per period[the second

term on the rhs of Eq(51)] because of friction with the —exp{ f d cos(kox( T))’
conduction electrons. The washboard potential is often used

to model a single Josephson tunnel junction. “ 3 7
The propagatod as given in Eq(6) has terms such as =n20 ( ) & f dry, - fo drzfo dry
p
it it 1
eXp[_ﬁJOdSVa(X)J' expl'gjods Va(x’)], X ex —%fo dTp(T)X(T) (56)
1 (i o where
exp — —f drV,(x(7)) 1.

hlo s

= ) — T =+
Because of the nonlinearities that enter du¥ {(x), a direct p(7) Iﬁkojgl Mo(r=m), A==l ®)
evaluation of the functional integrations Jnis not possible.
However, proceeding in a manner suggested by Fisher and We now use Eq(6) to have the propagator as
Zwerger[10], we write

J(Xg X, 0,% %, %,X")

T -

= 2 2% 2% 2h

nqi,ns,n3=0

_ - IVO> 3 S2
nlzz ( | %fd% fo dszfo ds, X{ei,(,Ek,M} fdsﬂl"'fdszf dslf ds) -
s AU <[ o o[ amy - [ o

where we have introducet, variables or “charges®; with

a “charge density” X f drdi (X, X0, 6X X XX 1 p,p’p). (58
N1
Here we assume that the criterion of uniform convergence as
p(s) ﬁko; eo(s—s), ==L (53 established by Cheet al.[11] is satisfied in that there exists

a Vy, sayV, such that forV0<V the above series has a
Similarly, expanding the other two terms Jrwith two new  uniform convergence. In E@58), J; contains the functional
sets of charges, and\;, we have integrals,
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’ ’ ' AR 1 Ny N 1 1 2 N 1 12 1 2,12
J1(X¢ , X¢,6,X X X, X 5 p,p ,p)=zf DxDx'Dx ex f_LJOd 2Mx _EMw 5 d Mx _EMw X
1t |1 1
- %J dr = Mx2+ 2Mw J dsF(s)[x(s)—x (s)]——j dsp(s)x(s)
0

i [t 18 — 1 (#B ] _
+ %fodSp’(S)X’(S)—%fo dTp(T)X(T)-FE . dTJ’O dok@ (7= a)x(1)x(0)
i [t hp — i [t s
— *(2) 1 v/ _ v/
+ ﬁfodsfo drK*¥(s—ir)x(7)[x(s)—x'(s)] ﬁfodsfodu[x(s) x'(s)]

X 7@(s—u)[x(u)+x'(u)]— fd3f dulx(s)—x'(s)]v3(s—u)[x(u)— X(U)]]
(59

The advantage of using the representations in Ex, (54), and(56) is that the functional integrals in E¢69) are Gaussian
and can be evaluated exactly. Proceeding in the same manner as before, we have

’ 1y ! r N M N 2 M 1 L2 Q(Z)_Z M —
J1(X¢, X5, 6,%,%{ ,X,X";p,p",p) = A T2 ex A M B-{exp{— P}exp — 7 2—/\r +T —mr%
277ﬁG+(t)( Vi )
N iM_— +' N G.(t) M 1 N 1 N M— c@
_Zﬁqp7 (qfrf quI)G (t) ﬁ qfriG,(t) qirfG+(t) ?r(qi 1 ()

M_—
+arCE (1) + (e () +arCP (1) - —[q2R<2>++< )+ 2050 R (1)

e[ Gites) G(9)
+qfR® (t>]+gf0ds[qi &0 T9G
G.(t-9)

M [(as[ dur® S aa i
+ ﬁq.fodsfoduﬁ (SLfa(w) = (W5

1
Fi(s)— §P2(3)+P4(S)

—i[=ps(s)*ps(s)]

M t t G_(s) i t G.(s)
— ) — - _
+ﬁquOdsfoduF@(s.u)[fl(u) s ﬁrffods;)l(s)&(t)

G_(t— M__t
o, J dspa(s) G( (t))—gq Jods[fl(s)—f2<s>]cgz><s>

——rfdsf dup,(s)G, (s—u)CP(u) —rf dsf dUpl(s)G+Et)) +(t—u)c:gZ)(u)].

(60)
|
Hereq(s), r(s), andq, r are as defined in Eq$29) and ”
(32), respectively, and P4(S)— ; 2 Njsin(v 7)) |he(s), (64)
p1(s)=p(s)—p'(s), (61)
3
pa(s)=p(s)+p'(s), (62 ()= _2 (Z \jCOS 7)) )gk(s), (65)

k - 3
P3(S):ﬁgf kE u(kZ)z( le )\jCOS(Vij)>gk(S)-

i 63

ko
B «
ko
P

> u ( 2, \jcod ka,)) (66)

k —
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o

ik "3 M G+ t t
p7= MO ) (kz)vk(jZl )\jsin(kaj)), (67) B= w—/\p6+TE,[;jodspl(s)G+(s)
1 (t-s )+ t t G_(t—s)
fa(s)=1 o duG, (t—s—u)py(u), (68) +Cy (t)fodspl(S)G+(S)+deSpl(s)T(t)
t S
1 G,(t—s) [t o
fz(S)=M$ OdUG+(t—U)p1(U), (69) +fod5fodUP1(S)G+(S uw)Ci(u)
G. (t) andG_(s) are as given by Eq$45) and(46), respec- -~ ftdethp ) G+(S)G (t—wCP () 70
tively. Also, o N 1 ,
2 (2)
P= iM(IOIS"”(S)G (S)) _Q—JFC(ZH(I) SRETH() __P7f dsp1(s)G.(s)
. t t G+ t— 1 .
_ﬁ( jodspl(S)G+(S))J‘Odu%[ﬁ(u)—Epz(u)+p4(u)—|[—p3(u)+p5(u)]
U ds”l(S)G*(S))f au [ 0RO a(0)~ 1)1 = _t)U)
1/ [t t
te f0d5p1(s)G+(s))fodu[fl(u)—fz(u)]c(f)(u). (71)

All the other terms are as given before. Equat{b8) along  reduced density matrix of the system in a harmonic potential.
with Egs.(60) to (71) give the required propagator. The extra We first derive the master equation for a general nonfactor-
terms in Eq.(60) compared to Eq(28) come primarily due izable initial condition and then consider the specific “ther-

to the additional inhomogeneities in the equations of motionmal” initial condition [6]. We also derive the corresponding
arising from the charge densiti€s3), (55), and(57) for both  wjigner equations.

the imaginary-time pathéecause of nonfactorizable initial
state$ and the real time paths. It can be seen that dropping

the anharmonicity we recover the propagator given by Egs. A. General nonfactorizable initial condition
(27) and(28) in Sec. Il A. i
This completes the derivation of the propagator for a par- 1. The master equation

ticle in a harmonic plus an anharmonic potential where the The time variation of the reduced density matrix of the
system-environment coupling is nonlinear and initial condi-oscillator is given as

tions are quite general. The influence functional is obtained

up to the second order of perturbation. The treatment for a

guantum particle in the washboard potential was given by

Chenet al. [11] using generalized initial conditions, but for 9 9 _
linear system-environment couplings. They assumed an —-p(Gr.r -t):f dgidridadr—-J(q¢.r¢,t,0i.ri,9.r)
Ohmic spectral density of the reservoir for which the gener-

alized _initia! state happens to be equiyalent to the prod_uct X No(Q T q—r) (72)
(factorized initial state. Our treatment is more general, in

that we do not make any assumptions on the reservoir spec-

tral density, and the various terms are worked out explicitly.

wherel g is the preparation function describing the deviation
V. APPLICATIONS of the initial (nonequilibriun) state from the equilibrium dis-
In this section we use propagat(f7) obtained in Sec. tribution. Using Eqs(27) and (28) for J and the simplified
[l A to derive the master equation for the dynamics of themethod of PaZ13], we get the master equation as
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Lo h 6(t) . w?(t) /2 , )
S P(Xe X ) =i m(ﬁ —a: D= (X)) = OXF=X¢%) | p(x¢ X7 1) = F(t)(xf_xf)(axf_ax]ﬁ)p(xf1Xf )

. |
~ 72D DX 2p(x1 X} 1) Ig[Dxp<t>+Dpxa)](xf—x;)(axﬁaxpp(xf X0

1
=7 Dl 1) (G, + dx) 2p(X¢ X ) + C(t)(Xf X¢)p1(Xg . X, t) = Cz(t)(Xf Xe)pa(Xt . Xp,t).  (73)

Here we have reverted back to the original coordinates using ) J— ) L —
Eq.(29), andp is the momentum of the particle. The various  P1(Xt,X; :t)=f dxidxidadr rJ(xs, X ,t,x;, % ,q,r)
coefficients in Eq(73) are

X No(Xj , X{ a.r), (82
A5014
H(t):ﬁ — (14, (74) and
wz(t)zﬁ{“;% : } (75 pz(xf,xf',t)=f dxdx/dadr I X} 6, X! ,Q.r)
(= | 2 (76 oA )
= — —_ a5 ,
2a5| ay The above coefficients of the master equation can be written
which is the dissipation term, in a more compact form as follows:
: 2513“3“12 é“3“1105% dsallaa = h _W(t)
Dop(t) =% agpt - + r=-3 : (84)
pp( ) 12 s CL’421(15 aas 2 W(t)
_ stalz agéﬁo_ dllasl 77 where
2 L
I W(D) =G, ()G () -G (D), (85)
which causes decoherencexn )
. . . 2 2 ..
2azay;  2azazag;  asan (1 G+(t)[ﬁG+(t)r(t)+G+(t)
Dyp(t) +Dpu(t) =% s — 2 +a4a5
e [G. ()G, ()—G2(1)]
Dty —wo o
= 3—a—11 (78)
@y
which is the anomalous diffusion term, o= F(t)J dSG (t) Fa(s)=Fa(t)
30111 0110 +( _ )
XX(t) h 2 ’ (79) +(t ( ) +(t) l(S)v
which generates decoherencepin (87)
I . T ~ [ 2 1 ]
- . asa - 2, — -2
Co()=h| arg— 5% (80) Caly=h) oF+ T OIF 70%() [[Ga(Das()],
L g ] (88)
which causes inhomogeneity in the master equation, ) ) L .
 oea] Ca)=h| o+ T () a+ 17 0*(1) [[GL(Dar(D)],
Co(t) =1 ag——— (81) ' '
2 1“7 g |’ (89
which causes inhomogeneity in the master equation, D, (t)=0, (90
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, 2 1,
G+ 3T (O + 11 w?(t)

Dpp(t) =M v

J 1 o : 1 1
ﬁU(Z)(t,t')h:v - Wa(p,X,t)= mfxdyé'm)py<x_ 5 Ylpalx+ 5Y> :
(91) (98)

Dyp(t) +Dpu(t) =% The Wigner equation may be employed for calculation of
various correlation functions in a quasiclassical manner. The
equation obtained here for nonlinear couplings and nonfac-
torizable initial conditions has wider applicability than at ob-
tained earlier by Romero and Pd5] for the linear coupling

case.

, 2 1,
dy + gl"(t)at,—l— Mw (1)

XU@(t,t")] iy, (92)

with

t !
U(Z)(t,t’)zfdsft du G, (t—s)R@(s,u)G, (t'—u).
0 0

B. Thermal initial condition
(93

We now consider the simple case of a thermal initial con-
It can be seen that the above equations have structures sindgiition [6], for which the off-diagonal elements of operators
lar to those for the linear coupling ca$#5], though the in position space of the particle are suppressed in thermal
coefficients here are quite complicated. The last two terms orquilibrium.
the rhs of Eq(73) make the master equatiamhomogeneous
This implies that for generalized initial conditions, in the

case of nonlinear system-environment couplings, it is not The thermal initial condition has the preparation function

1. The master equation

possible to obtain an exact Liouville operatioy where L
satisfies the equation

ap
T =Lp (94)

This is a feature of nonfactorizable initial conditions even for

the case of linear system-environment couplifi4].

2. The Wigner equation

The Wigner equation is obtained from the master equation

by writing [16]

P
atP

1
X+ §y> .
(95

9 1= 1
_ = imn)py( y— —
s W(p.x.t) 2wﬁﬁx dyé <x 5Y

Using Eq.(73) in Eqg. (95) we get

w__ 17 W+ w?(t i W+ 6(t &W
ot = W ax PWH T (D 5 WO 2
&2 1 2
+Dpp(t)&_p2W_%Dxx(t)WW
D D > W ZF J W
+[Dyp(t) + px(t)]m e (t)%P
. d -4
_Cl(t)%wl_lcz(t)%wz, (96)
where

1 - ilh)py 1 1
Wi(px,t)=5— | dye"™x=Zy|p|x+ 5y
(97)

and

[14]

No(Gi Fi,a.n)=F(qi.r)s(g—g)a(r—ry) (99
in Eq. (72). Thus, in Eq.(73), we now have
pa(ds,r¢ 1t):J daidrir;J(qs,re,t,q;,rq,0i,r)f(a;,rq)
(100
[cf. Eq.(82)] and
p2(ds,r¢ ,t):f dgidrg;J(qgs,r¢,t,q;,ri,9i,r)f(ai,r)
(10D

[cf. Eq. (83)]. Using Eq.(99) the reduced density matrix of
the quantum Brownian oscillator becomes

p(ds,r¢ ,t)=j dgidriJ(qs,r¢,t,0i,r,0i,r)f(Qi,ri).

(102)
Now, from Eq.(27) we have
J(Qs 18,05, ,0.15)
=aoeXP{;i— DIRCINER N ISR
(103

whereay=1/Z with Z given by Eq.(48), and from Eq(28),
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2. The Wigner equation

A 2 (@rbG TG Proceeding as before, we obtain the Wigner equation from
5 o . the master equatiofl07) as
=—(ayf{+axq) +iaz(Qsr ¢+ o) +iasdirs

. . - W 1o o g
+lasgsli+1laglili— az0i +1agdsli— agdsd; Y 5PW+w (t)%XWﬂL e(t)%W
— (@007 + @110+ @107 +i @y 30 + i ag0s - 2 2
(104) + Dpp(t)o-, 2W+[Dxp(t)+Dpx(t)]aXap
Thus we have 2. J
, te I'(t )—PW (108
i
Ji ) =———0 et .
paldr.re.t) (as+ ag) qu(qf . The coefficients on the rhs of E(LO8) are
I D=0+ —2 Bt (109
(a5+a8) (C(5+ Cl’g) 1 '
(agtaigy) .
————————(d; ~lazqr)p(ds,r¢,t) ~2\_ 2 43 =
ay(as+ ag) w(t)=w(t)+ (a5+a8)cl(t)’ (110
2|C¥12 ( t)
— ——;p(Qs,r¢, - Ci(1)
(as+ag) Tt)=T(t)— =" 111
.. (H=I(t) 2actag)’ (111
mp(% Ti,t) (109 5 bt ol g+ 1])~ -
and PP PP ag(astag)
' -k (t)} (112
_I . — PR— s
Pz(Qf,rf,t):a—A(ﬁrf—lasm)P(Qf,rfi)- (106) (“5+ 8) ay 2
Using Egs.(105 and (106) in Eq. (73), and with D,(t) Dxp(t) + Dpx(1) =[Dyp(t) + D py(1)]
=0 [as in EQ.(90)], we obtain the master equation for the (ag+ @) o (t)
case of thermal initial conditions as —2 W B ()-2
ay(ast+ ag) ay
(1) (113

d h
—eP(Xe X ,t>=i{m<a —d) = = (Xi=X})
Equation(108) has the form of a generalized Fokker-Planck
equation.
p(Xs,Xg ) Thus we see that nonlinearity in the environment up to
second-order perturbation doast introduce any nonlinear
1. behavior in the system for either factorized initial conditions
— 7T (O =X) (= ) p (X, Xt 1) [4] or nonfactorizable initial conditions.

(1) ,
o X

1. V. FLUCTUATION-DISSIPATION THEOREM
- FDpp(t)(Xf_X;)zp(xf ,Xf, it
The real and imaginary parts of the coordinate autocorre-
lation function of the quantum particle are not independent

i -
~ 71D+ D px( 1) 1(X¢ =X ) (9, + dyr) and should be related by a generalized fluctuation-dissipation
theorem. In this section we establish a fluctuation-dissipation
X p(Xs ,Xf ,1). (1070  theorem using the propagator in EQ7) for the quantum

Brownian particle in a harmonic potential. Proceeding as do
This has the form of an exact master equation, i.e., there at@rabertet al. [8], we have the response functigit) of the
no inhomogeneities, and in this case an exact Liouville opguantum oscillator as
erator L exists. This is in agreement with the findings of

Karrlein and Grabeift14] for thermal initial conditions in the 1

i - : e i x(O=17G+() (114
inear coupling case. The inhomogeneities in the master

equation emerge only for the general nonfactorizable initial

conditions. and the coordinate autocorrelation functioft) as

056120-11



S. BANERJEE AND R. GHOSH PHYSICAL REVIEW B7, 056120 (2003

C(t)=(x(1)x) = S(t) +iA(1), (115 s = % fode | (w)cotr( zﬁk_wT )
B

whereS(t) is the symmetrized correlation given by
2

S(t):%(X(t)XJFXX(t)):%/\[G+(t)+G+(t)C(12)+(t)], WCOS{Z“’S) (124

(116 Thus, from Eq.(121), we get

andA(t) is the antisymmetrized correlation given by
z+9(2)

. . z>—B—Mk2 G (InG(2)
A(t)=E(x(t)x—xx(t»:—z)((t), t=0, (117

- —2—2 | YO ) + —Z_Vi 7}7(2)(2)] .
with x(t) given by Eq.(114), these having the same form as (2~ vp) (= vp)

in the linear coupling case, and (125
C@ ()= JtdsG+(t_s)C(2)(s) Now, using Eq.(118), we have
o G.(t) Tt
(2 — M,
[Eq. (38) with m=1]. Substitutingu{?) from Eq. (35), ¢{*’ 7(2)= 26.(2) 2 (z°+ wp). (126

from Eq.(17), 7®(s) from Eq.(22) and using
Also, using Egs(22) and(123), we have

+H(2)=L{G, (D)} = (118 - M —
24 D(2)+ 3 1%(2)=5{zy'P(2) - ¥2(0)}, (127)
from Eq. (45), we get where
N — 2 (*do | h
uP =6, (|n), (119 CRE] o °°”< —zk:T) - 1

1 o - t Combining Eqs(126) and (127), we have
GAt)C&”*(tFWk_E_xG+<|vk|>J0dsG+<t—s)gk<s>, 9 Fas(126 and(127

N 2 2y 2
(120 “0)(2)= 1 J;wo)Jr Y Z(O)_ (129
and 26+(2)
EA Using EQq.(129 in Eqg. (125 we get
S(z)=L{S(t)} =126 (2) L -
82=gw, 2, 7= )[G+(z> G.(md)].

1 o - "
a2, G (InhG. (e, (12D (130

This can then be cast in the form
where,L stands for the Laplace transform. From E2(), we

h - ho |\~
ave S(w) =i cot —e | (@), (131)
2kgT
ho ®
9k(s)= _f | (@)cot 2ksT/[4w?+ vi] cog2ws) which is the usual statement of the fluctuation-dissipation
— 5 theorem, wheré&(w) is the Fourier transform of(t):
=)= 2s), (122 o
S(w)=S(iw)+S(—iw) (132
where
g . and
2 (~do |
Y®(s)= —J do 1) coth = cog2ws) .
Mo 7w T 2kT X' (@)= S xi0) - X(~iw)] (139
(123 X SLX X :
and with
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_ e , . Chenet al. [11] of the case of linear system-environment
X(w)=J dtx(t)e''=x(—iw), (1349 couplings and an Ohmic spectrum of the reservoir.
o From the propagator for the particle in a harmonic poten-
where x(t) is the response functiofi14). tial we have obtained the master equation and the Wigner

It is thus seen that for our case of couplings nonlinear irfquation. Both these equations exhibited inhomogeneities,
the environment coordinates and treated up to second ordéfhich imply that it is not possible to construct an exact Liou-
of perturbation, the form of the fluctuation-dissipation theo-‘{'"e operator for generalized mmal conditions for either the
rem is preserved for factorized initial conditiopd] as well ~ linear coupling case of Karrlein and Grabgtt], Romero
as general nonfactorizable initial conditions. The proportion2nd PaZ15], or when there is nonlinearity in the environ-
ality of é(w) and}”(w) illustrates the close connection be- ment coordinate in the system-environment interaction. We

tween fluctuation and dissipation mechanisms acting on thgave then considered the specific case of a simple initial

) X ) .= . _condition, called the thermal initial condition, where an exact
guantum Brownian oscillator. That the fluctuation-dissipation . . . :
S . . . master equation and a Wigner equation resembling the gen-
relation in our case is not violated serves as an important _. . ;
. eralized Fokker-Planck equation are obtained. Thus under
check of the correctness of our calculations. : N - .
such simpler initial conditions, an exact Liouville operator
exists for the lineaf14] as well as the nonlinear coupling

case.

In this paper we have investigated the quantum Brownian \We have also used the propagator for the quantum Brown-
motion (QBM) with couplings nonlineafquadrati¢ in the  ian part_lcle ina harmonlc potential to establish a gene@hzed
environment coordinates, treating it up to second order Ofluctuatlon-dlssmatlon theorem. Eyen though the coefficients
perturbation for generahonfactorizableinitial conditions. N our propagator are more complicated than the correspond-
We have thus extended the work of tetial. [4] and Brun Ing linear coupling case, the form of the fluctuation-
[5] who set out the basic foundations for handling nonlineadissipation relation is found to be the same as that in the
QBM with factorizedinitial conditions. linear coupling case, for both factorizé4l] and nonfactoriz-

We have constructed the influence functional for nonlin-able initial conditions, confirming that the results are physi-
ear interactions up to second order of perturbation with gencally consistent, and the same physical mechanism is respon-
eralized initial conditions. We have then used the influencéible both for the fluctuations of the position of the quantum
functional, restricting the nonlinearity to the environment, tooscillator and for its damping. _ _
get the propagator for the particle in a harmonic potential as The results presented here are applicable to all the physi-
well as for the particle in an additional anharmonic potential,cal problems modeled by the quantum Brownian motion
called the washboard potential used to describe the ideal mgvith initially correlated and nonlinearly coupled environ-
tion of a heavy charged particle in a metal. For the harmonidnent.
potential case, the propagator is similar to at in the corre-
sponding linear coupling cgs[é;] even though the poeffi— ACKNOWLEDGMENTS
cients are now more complicated—among other things hav-
ing an additional temperature-dependent factor in them. For The work of S.B. was supported by the University Grants
the case of the particle in the washboard potential, we hav€ommissionNUGC), India. The School of Physical Sciences,
been able to work out all the terms in the propagator explicdawaharlal Nehru University, is supported by the UGC under
itly. This is a step forward from the previous treatment bya Departmental Research Support scheme.

VI. SUMMARY

[1] R.P. Feynman and F.L. Vernon, Ann. Physl.Y.) 24, 118 [8] H. Grabert, P. Schramm, and G.L. Ingold, Phys. Re§& 115
(1963. (1988.

[2] The equations of motion for open quantum systems may also[9] S. Banerjee and R. Ghosh, Phys. Re\62\ 042105(2000.
be derived in a general framework by the projection operatof10] M.P.A. Fisher and W. Zwerger, Phys. Rev.3B, 6190(1985.
technique, for arbitrary system-environment couplings and[11] Y.-C. Chen, J.L. Lebowitz, and C. Liverani, Phys. Rev4@
very general initial conditions; see, for example, H.-P. Breuer 4664 (1989.
and F. PetruccioneThe Theory of Open Quantum Systems[12] For details, see S. Banerjee, Ph.D. thesis, Jawaharlal Nehru

(Oxford University Press, Oxford, 2002Chap. 9. University, New Delhi, 2003.
[3] A.O. Caldeira and A.J. Leggett, Physical®1, 587 (1983. [13] J.P. Paz, irPhysical Origin of Time Asymmetrgdited by J.J.
[4] B.L. Hu, J.P. Paz, and Y. Zhang, Phys. Rev ) 1576(1993. Halliwell et al. (Cambridge University Press, Cambridge,
[5] T.A. Brun, Phys. Rev. D17, 3383(1993. 1994).
[6] V. Hakim and V. Ambegaokar, Phys. Rev.3®, 423(1985. [14] R. Karrlein and H. Grabert, Phys. Rev.35, 153(1997).
[7] C.M. Smith and A.O. Caldeira, Phys. Rev.38, 3509(1987); [15] L.D. Romero and J.P. Paz, Phys. ReVb3 4070(1997).

41, 3103(1990. [16] H. Dekker, Phys. Rev. A6, 2116(1977).

056120-13



